SECONDARY EDGE EFFECT IN THE BENDING OF THIN ELASTIC SHELLS*

L.S. SRUBSHCHIK

For the equations of strictly convex thin shells of revolution under uniform pressure and fixed clamping of the edge there is shown the existence of a unique solution corresponding to equilibrium with radial tensilc forces for which the secondary cdgc effect phenomenon holds. There are constructed appropriate asymptotic expansions, and their foundation is given with an estimation of the remainder term. The principal terms of these expansions are represented in the form of simple computational formulas.

It is also shown that the secondary edge effect phenomenon can hold for the bending of a thin, shallow, rigidly clamped shell in the shape of an elliptical paraboloid under uniformly distributed internal pressure. Simple asymptotic formulas are written down for the appropriate solution corresponding to equilibrium with only tensile forces.

The equations of the nonlinear theory of thin elastic shells contain two essential small parameters in the highest operators: ε^{2} (the relative thinness of the wall) and δ^{2} (the relative loading) governed by the formulas

$$
\varepsilon=h(a \gamma)^{-1}, \quad \delta^{2}=p a(E h)^{-1}, \quad \gamma^{2}=12\left(1-\sigma^{2}\right)
$$

where h is the thickness and a is the characteristic dimension of the shell, p is the intensity of the transverse pressure, E is Young's modulus, and σ is the Poisson's ratio. This explains the secondary edge effect phenomenon detected in $/ 1 /$, which is that as the parameters δ and δ^{-3} tend simultaneously to zero, the edge effect of axisymmetric bending of thin elastic shells of revolution develops within the edge effect zone of the "degenerate" problem on the equilibrium of an absolutely flexible (soft) shell.

1. Formulation of the problem. The nonlinear differential equations of the axisymmetric deformation of rigidly clamped shells of revolution under the uniformly distributed pressure p can be written in the form /2/:

$$
\begin{align*}
& A v-\frac{1}{2} u^{2}+\theta u=0, \quad \varepsilon^{2} A u+u v-\theta v-+\frac{1}{2} q \rho^{2}=0 \tag{1.1}\\
& A() \equiv-\rho \frac{d}{d \rho} \frac{1}{\rho} \frac{d}{d \rho} \rho(), \quad u=\frac{d v}{d \rho}, \quad v=\frac{d F}{d \rho}, \quad \theta=\frac{d z}{d \rho} \\
& \left|\frac{v}{\rho}, \frac{u}{\rho}\right|_{\rho=0}<\infty, \quad\left[\frac{d v}{d \rho}-\frac{J}{\rho} v\right]_{\rho=1}=\left.u\right|_{\rho=1}=F \quad{ }_{\rho=1}=0 \tag{1.2}
\end{align*}
$$

All the quantities in (1.1) and (2.2) are dimensionless and interrleated by the dimensional formulas

$$
a\{p, w, z\}=\{5, \square, Z\}, \quad E h\{F, q\} \quad\left\{\frac{\Phi}{a^{2}}, p\right\}, \quad=\frac{h^{2}}{\gamma^{2} u^{2}}
$$

Here W is the deflection of points of the middle surface Z, Φ is the stress function, E is Young's modulus, ξ is the variable radius, and a is the radius of the reference contour. The remaining notation was introduced above. It is later assumed that the shell is strictly convex $(-m \rho \leqslant \theta \leqslant-\alpha \rho, 0<\alpha<m, \alpha, m=$ const). For a spherical shell we have $\theta=-(a / R) \rho \quad(R$ is the radius of the sphere). The function $\theta(\rho)$ is considered sufficiently smooth. The small values of $|\rho|$ considered below enclose a broad class of service loads. Under external pressure (acting from the convexity of the shell) $q>0$, while for internal pressure $q<0$.

[^0]The "degenerate" problem about the equilibrium of an absolutely flexible (soft) shell later plays an important role. The appropriate equations are obtained from (1.1) and (1.2) for $\varepsilon=0$, and are written in the form

$$
\begin{align*}
& A v_{0}-\frac{1}{2} \mu_{0}{ }^{2}+\mathrm{e}{v_{0}}_{0}=0, \quad\left(\mu_{0}-\theta^{-1}\right) v_{0}+\frac{1}{2} q \rho^{2}=0, \quad u_{0}=\frac{d w_{0}}{d \rho} \tag{1.3}\\
& v_{0}=\frac{d f_{1}}{d_{j}^{\prime}}, \quad\left|\frac{c_{n}}{f}, \frac{m_{0}}{p}\right|_{(n)==\hat{j}} \quad \therefore \infty \text {, } \\
& {\left[\frac{d c_{n}}{d!}-\frac{z_{1}}{p} c_{n}\right]_{1-1}=u_{n}(1)=F_{n}(1)=0}
\end{align*}
$$

The problem (1.3) has many solutions $/ 3,4 /$. However, the so-called positive solutions $\left(v_{11} \geqslant 0\right)$, which correspond to equilibria without radial compressive stresses $/ 5 /$, have meaning in mechanics. It is known $/ 3 /$ that a positive solution exists and is unique, and in its neighborhood there is a solution of the problem (1.1) and (1.2) as $\varepsilon \rightarrow 0$ for which $v \geqslant 0$ (such solutions are called membrane solutions in / / /), and the following asymptotic expansions are valid

$$
\begin{array}{ll}
v \sim \sum_{s=0}^{n+1} \varepsilon^{s}\left|v_{s}(\rho)+\varepsilon h_{s+1}(t)\right|, & h_{\mathrm{T}}=0 \tag{1.4}\\
u \sim \sum_{s=0}^{n} \varepsilon^{s}\left[u_{s}(\rho)+g_{s}(t)\right], & t=\frac{1-\rho}{\varepsilon}
\end{array}
$$

The functions u_{s}, v_{s} are obtained by direct expansion of the solution in powers of ε and are determined from the boundary value problems

$$
\begin{align*}
& \left|\frac{v_{s}}{1}\right|_{n, n}<\infty,\left|\frac{d v_{s}}{d \rho}-\frac{j}{\varphi} i_{s}\right|_{0=1} \ldots\left[\frac{d h_{3+1}}{d t}+-j i_{s}\right]_{t=0} . s \geqslant 1 \tag{1.5}
\end{align*}
$$

The boundary-layer functions $h,,_{s}$ are determined from second order differential equations with constant coefficients and are written down in explicit form if the functions v_{i}, u_{i} have already been found for $i \leqslant s$ (see (3.6)-(3.9) in $/ 3 /$).

Furthermore, for $|q| \& 1$ simple asymptotic formulas are constructed by the asymptotic boundary-layer method /6,7/for the positive solution of the problem (1.3) correspondong to the solutions of the problems (1.5), and therefore, for the membrane solution of the problcm (1.1), (1.2). Let us note that the principal terms of the asymptotic for the problem (1.3) had been obtained formally earlier $/ 1,8-10 /$ for $4<0,4 \rightarrow 0$.

For $4>0$ the shell is first "inverted", afterwards the applied load causes an increase in shell convexity, and as will be shown below, takes on an equilibrium mode close to the surface $(-Z)$, which is a mirror image of the bulging initial shell surface relative to the plane of the reference contour. This varifies the A.V. Pogorelov hypothesis about the existence of such equilibrium modes (see the "principle" A in $/ 11 /$). Let us note that for $|q| \ldots 0$ the foundation of the asymptotic of the membrane solution as $\varepsilon \rightarrow 0$ generally drops out since the constant in the a priori estimate (4.9) in /3/ grows without limit. However, analogous considerations for the requirement of a simultaneous tendency of the parameters δ and δ^{-2} to zero permit carrying the proof of the existence of the membrane solution and the foundation of its asymptotic expansions in $/ 3 /$ over to this limit case as well.
2. Asymptotic of the positive solution for an absolutely flexible shells under small loads. As $|q| \rightarrow 0$ the problem (1.3) is a singular perturbed problem with a small parameter q in the highest operator. In fact, by setting $q=\delta^{2}, v_{0}=f \delta^{2}, u_{0}=y$ we obtain from (1.3) for $q>0$

$$
\begin{align*}
& \delta^{2} A f-\frac{1}{2} y^{2}+\theta y=0, \quad(y-\theta) f+\frac{1}{2} \rho^{2}=0 \tag{2.1}\\
& f=\frac{d F_{0}}{d \rho}, \quad y=\frac{d w_{0}}{d \rho}, \quad\left|f \rho^{-1}\right|_{\rho=0}<\infty \\
& {\left[\frac{d}{d \rho}-\frac{\tilde{y}}{\rho} f\right]_{\rho=1}=0, \quad w_{0}(1)=F_{0}(1)=0, \quad 0<\sigma<\frac{1}{2}}
\end{align*}
$$

Asymptotic expansions of the positive solution of the problem (2.1) are constructed as $\delta \rightarrow 0$ in the form

$$
\begin{equation*}
\left.f \sim f_{\delta}{ }^{n}=\sum_{k=0}^{n+1} \delta^{k} \mid f_{k}(\rho)+\psi_{k}(\tau)\right], \quad y \sim y \delta^{n}=\sum_{k=0}^{n+1} \delta^{k}\left[y_{k}(\rho)+\varphi_{k}(\tau) \mid\right. \tag{2.2}
\end{equation*}
$$

where $\tau=(1-\rho) / \delta$. The functions f_{k}, y_{k} are obtained by using the firstiteration process $(6,7)$ for
the direct expansion of the solution in integer powers of the parameter δ. Equating coefficients of $\delta^{0}, \delta^{1}, \ldots, \delta^{n}$ to zero, we deduce successively from (2.1)
$y_{0}=2 \theta, \quad f_{0}=-\frac{1}{2} \mu^{2} \theta^{-1}, \quad y_{1}=f_{1}=0, \quad y_{k}=0^{-1}\left[A f_{k-2}-\frac{1}{2} \sum_{i=1}^{k-1} y_{i} y_{k-i}\right], \quad f_{k}=--\theta^{-1}\left[\sum_{i=1}^{k-1} y_{i} f_{k-i}+y_{k} f_{0}\right] \quad(k \geqslant 2) \quad$ (2.3)
This same iteration process yields still another family $y_{k}, f_{k}\left(y_{0}=0, f_{0}=1 / 2 \rho^{2} \theta^{-1}, \ldots\right)$ which is not examined later since f_{0} does not satisfy the positivity condition.

Functions ψ_{k}, φ_{k} of the boundary-layer type are obtained by using the second iteration process $/ 6,7 /$. Namely, we substitute (2.2) into (2.1), take account of (2.3), expand the functions f_{k}, y_{k}, θ in Taylor series at the point $\rho=1$, set $\rho=1-\delta x$ and equate the coefficients of $\delta^{0}, \delta^{1}, \ldots, \delta^{n}$ successively. We obtain the system

$$
\begin{align*}
& \psi_{0}{ }^{\prime \prime}+\frac{1}{2} \psi_{0}^{2}+\theta_{0} \varphi_{0}=0, \quad f_{00} \varphi_{0}+\psi_{0} \varphi_{0}+\theta_{0} \psi_{0}=0, \quad()^{\prime}=d() / d \tau \tag{2.4}\\
& \left.\psi_{0}\right|_{\tau=c}=0,\left.\quad \psi_{0}\right|_{\tau=\delta^{-1}}=0, \quad \theta_{0}=\theta(1), \quad f_{00}=f_{0}(1), \quad \tau=(1-\rho) / \delta
\end{align*}
$$

to determine ψ_{0}, T_{0}.
Evidently $\Upsilon_{0}=\psi_{0}=0$. Taking this fact into account, we deduce for the determination of $\psi_{i}, \varphi_{i}(i \geqslant 1)$

$$
\begin{align*}
& a_{0}^{2}=\frac{A_{0}^{2}}{f_{00}}, \quad R_{i 1}=\tau \psi_{i-1}^{\prime \prime}+\psi_{i-1}^{\prime}+\sum_{j+m+2=i} \tau^{j} \psi_{m}-\sum_{m+r+p=i} \tau^{\tau} y_{m r} \varphi_{p}-\frac{1}{2} \sum_{m+p=i} \varphi_{m} P_{p}+\sum_{m ; \mu-i} \tau^{\prime \prime \prime} \theta_{m}\left(f_{p}\right. \tag{2.5}\\
& K_{\mathrm{ig}}=\sum_{j=1}^{i-1} \varphi_{j} \psi_{i-j}+\sum_{m+r+\rho=i} \tau^{r} y_{m} \psi_{p}-\sum_{m+r+p=i} \tau^{r} f_{m} \varphi_{p}-\sum_{m+\mu=i} \theta_{m} \tau^{m} \psi_{p}, \quad \psi_{i}^{\prime}(0)=-\sigma \psi_{i-1}(0)+\left[\frac{d f_{i-1}}{d \rho}-\sigma f_{i-1}\right]_{\rho=1} \\
& \left\{\theta_{l}, y_{m}, f_{m}\right\}=\frac{(-1)^{l}}{l!} \frac{d^{l}}{d \rho^{\prime}}\left\{\theta, y_{m}, f_{m}\right\}_{\rho=1}, \quad \boldsymbol{y}_{i}\left(\frac{1}{\delta}\right)=0, \quad p \neq i
\end{align*}
$$

Here $R_{i 1}, R_{i 2}$ are known functions if $y_{k}, f_{k}, \varphi_{k}, \psi_{k}$, have already been found for $0 \leqslant k \leqslant$ i - 1. In particular, we have $R_{11}=R_{12}=0$, and we find from (2.5)

$$
\begin{align*}
& \psi_{1}=-f_{00} \theta_{0}^{-1} \varphi_{1}=C \exp \left(-\alpha_{0} \tau\right), \quad \alpha_{0}^{2}=-2 \theta_{0}^{3}>0 \tag{2.6}\\
& C=2^{-1,5}\left(-\theta_{0}\right)^{-3,5}\left[(2-\sigma) \theta_{0}+\theta_{1}\right], \quad \theta_{1}=-\left.\frac{d \theta}{d \rho}\right|_{\rho=1}
\end{align*}
$$

Evidently ψ_{i}, φ_{i} are zero-order boundary-layer functions.
3. Foundation for the asymptotic expansions (2.2). We use the method developed in /3,12-14/ for the foundation of the asymptotic expansions (2.1). We introduce the notation /14/

$$
\begin{equation*}
f^{*}=f_{\delta}{ }^{n}+\sum_{i=1}^{n+1} \delta^{i} \eta_{i}+\delta^{n+1} \gamma_{\Omega}, \quad y^{*}=y_{\delta}^{n}+\sum_{i=1}^{n+1} \delta^{i} \xi_{i} \tag{3.1}
\end{equation*}
$$

where η_{i}, ξ_{i} are of an exponential order of smallness in δ infinitely differentiable monotonic functions, where $\eta_{i}(\rho)=-\psi_{i}\left(\delta^{-1}\right), \xi_{i}(\rho)=-\varphi_{i}\left(\delta^{-1}\right)$ for $0 \leqslant \rho \leqslant 0,1$ and $\eta_{i}(\rho)=\xi_{i}(\rho)=0$ for $0.2 \leqslant$ $\rho \leqslant 1$. Evidently the functions f^{*}, y^{*} satisfy all the boundary conditions in (2.1) and the following estimates hold

$$
\begin{equation*}
\max \left|\frac{d^{x} z}{d p^{x}}\right|<c_{0} \delta^{n+1}, \quad x=0,1,2 \tag{3.2}
\end{equation*}
$$

where $z-f_{0}{ }^{n} \cdots f^{*}$ or $z=y_{0}{ }^{n}-y^{*}$. Here, as everywhere in Sect.2, the c_{i} are certain positive constants independent of ρ and δ; the maximum is taken everywhere for $0 \leqslant \rho \leqslant 1$.

Let us introduce Banach spaces of the functions: 1) the space X of the vector functions $\mathbf{U}=\left\{F_{0}, w_{0}\right\}$ with the components $F_{0} \in C_{4}[0,1]$ and $w_{0} \in C_{2}[0,1]$ which satisfy the boundary conditions in (2.1) and the norm defined by the equality $\|\mathrm{U}\| x=\left|F_{0}\right|_{4}+\left|w_{0}\right|_{2} ; 2$) the space Y of vector functions $\mathbf{b}=\left\{b_{1}, b_{2}\right\}$ with the components $b_{1}, b_{2} \in C_{0}[0,1]$ and the norm defined by equality $\|b\|_{Y}--\left|b_{1}\right|_{0}+\left|b_{2}\right|_{0}$. The spaces $C_{k}[0,1]$ are formed by functions defined in the segment $[0,1]$ which have continuous derivatives to order k inclusive. The norm $|\cdot|_{k}$ in $C_{k}[0,1]$ is defined in the usual manner.

Let us examine the problem (2.1) as an operator equation $\mathbf{R}(\mathbf{U})=0$, where $\mathbf{U}=\left\{F_{0}, w_{0}\right\}$ is a solution, and the operator \mathbf{R} is defined by the left side of the system (2.1) and acts from the
space X into the space Y.
According to $/ 3,12-14 /$, to give a foundation to the asymptotic, it is necessary to prove that the inequality

$$
\begin{equation*}
\left\|\mathbf{R}\left(\mathrm{U}^{*}\right)\right\|_{\mathrm{Y}}\| \|_{i}\left[\mathbf{R}_{\mathrm{U}^{*}}^{\prime}\right]^{-1}\left\|_{(Y \rightarrow Y)}^{*}\right\| \mathbf{R}^{\prime \prime} \|_{(X \rightarrow(X \rightarrow Y)}<\frac{1}{2} \tag{3.3}
\end{equation*}
$$

is satisfied as $\delta \rightarrow 0$, where $U^{*}=\left\{F_{0}{ }^{*}, w_{0}{ }^{*}\right\}$ is the constructed asymptotic expansion of (3.1), $\mathbf{R}_{\mathbf{U}^{*}}^{\prime}$ is the Fréchet derivative on the element \mathbf{U}^{*}, and $\mathbf{R}^{\prime \prime}$ is the second derivative of the operator \mathbf{R}.

Lemma 3.1. Let $\delta \rightarrow 0$ and $-m \rho \leqslant \theta \leqslant-\alpha \rho, 0<\alpha<m, \alpha, m=$ const. Then the following estimates hold

$$
\begin{equation*}
t^{*} \geqslant \frac{1}{4 \alpha} \rho, \quad \max \left|\rho^{-1}\left(y^{*}-\theta\right)\right| \leqslant m+1=m_{0} \tag{3.4}
\end{equation*}
$$

Proof. Taking account of the inequalities

$$
\max \left|\frac{\psi_{i}+\eta_{i}}{\rho}\right| \leqslant \max \left|\frac{d \psi_{i}}{d \rho}\right|, \quad \max \left|\frac{\varphi_{i}+\xi_{i}}{\rho}\right|<\max \left|\frac{d \varphi_{i}}{d \rho}\right|
$$

we rewrite f^{*} and y^{*} in the form

$$
f^{*} \ldots-\frac{1}{2} \rho^{2} \theta^{-1}+\delta\left(\psi_{1}+\eta_{1}\right)+\sigma\left(\rho \delta^{3}\right), \quad y^{*}=20+\delta\left(\varphi_{1}+\xi_{1}\right)+\sigma\left(\rho \delta^{3}\right)
$$

from which we deduce (3.4) as $\delta \rightarrow 0$ by virtue of the conditions of the lemma.
Lemma 3.2. Let the conditions of Lemma 3.1 be satisfied. Then the following estimates hold

$$
\begin{equation*}
\left\|\mathbf{R}\left(\mathbf{U}^{*}\right)\right\|_{Y} \leqslant c_{1} \delta^{n+1},\left\|\mathbf{R}^{\prime \prime}\right\|<c_{3} \tag{3.5}
\end{equation*}
$$

The proof is analogous to the proof of Lemmas 2.2 and 2.3 in $/ 14 /$ and the estimate (4.17) in $/ 3 /$.

Theorem 3.1. Let the conditions of Lemma 3.1 be satisfied. Then the following estimate holds

$$
\begin{equation*}
\left\|\left[\mathbf{R}_{\mathbf{U}^{*}}^{\prime}\right]^{-1}\right\|\left(Y_{\rightarrow X}\right) \leqslant c_{2} \delta^{-6} \tag{3.6}
\end{equation*}
$$

Proof. We consider the system of equations with boundary conditions

$$
\begin{align*}
& \mathbf{R}_{\mathbf{U}^{*}}(\mathbf{U})=\mathbf{b}, \quad \mathbf{b}==\left(b_{\mathbf{1}}, b_{2}\right), \quad \mathbf{U}=(F, w) \tag{3.7}\\
& \mathbf{R}_{\mathrm{U}^{*}}^{\prime}=\left\{\delta^{2} v^{4} F+\frac{1}{\rho} \frac{d}{d \rho}\left[u\left(y^{*}-\theta\right)\right], \quad-\frac{1}{\rho} \frac{d}{d \rho}\left[f^{*} u+v\left(y^{*}-\theta\right)\right]\right\} \\
& \nabla^{2}=\frac{1}{\rho} \frac{d}{d \rho} \rho \frac{d}{d \rho}, \quad v=\frac{d F}{d \rho}, \quad u=\frac{d w}{d \rho} \\
& \left|\frac{v}{\rho}, \frac{u}{\rho}\right|_{\rho=0}<\infty, \quad\left[\frac{d v}{d \rho}-\frac{\sigma}{\rho} v\right\}_{\rho=1}=v^{\prime}(1)=F(1)=-0
\end{align*}
$$

Multiplying the first equation in (3.7) by ρF, the second by ρw, adding the expressions obtained and integrating between 0 and 1 , we deduce, by taking account of the boundary conditions

$$
\begin{equation*}
\delta^{2} \int_{0}^{1}\left[\rho\left(\frac{d v}{d \rho}\right)^{2}+\frac{v^{2}}{\rho}\right] d \rho-\delta^{2} \sigma v^{2}(1)+\int_{0}^{1} f^{*} u^{2} d \rho:=\int_{0}^{1}\left(b_{1} F+b_{2} w\right) \rho d \rho \tag{3.8}
\end{equation*}
$$

Furthermore, taking into account that $F(1)=w(1)=0$, we find the simple inequalities

$$
\begin{equation*}
\int_{0}^{1} \rho F^{2} d \rho \leqslant \frac{1}{8} \int_{0}^{1} \frac{v^{2}}{\rho} d \rho, \quad \int_{0}^{1} \rho w^{2} d \rho \leqslant \frac{1}{2} \int_{0}^{1} \rho\left(\frac{d w}{d \rho}\right)^{2} d \rho \tag{3.9}
\end{equation*}
$$

Now, by using (3.4), (3.9) and the cauchy-Buniakovskii inequality, we successively obtain from (3.8)

$$
\begin{gather*}
\delta^{2}(1-\sigma)\|v\|_{H^{2}}+\frac{1}{4 \alpha}\|u\|_{\rho}^{2} \leqslant\left\|b_{1}\right\|_{\rho}\|F\|_{\rho}+\left\|b_{2}\right\|_{\rho}\|w\|_{\rho} \leqslant 2^{-1 / 2}\left(\left\|b_{1}\right\|_{\rho}\|v\|_{H}+\left\|b_{2}\right\|_{\rho}\|u\|_{\rho}\right) \tag{3.10}\\
\|v\|_{H}^{2}=\int_{0}^{1}\left[\rho\left(\frac{d v}{d \rho}\right)^{2}+\frac{v^{2}}{\rho}\right] d \rho, \quad\|v\|_{\rho}^{2}=\int_{0}^{1} \rho v^{2} d \rho
\end{gather*}
$$

The following estimates hence result directly

$$
\begin{align*}
& \|v\|_{n}+\|u\|_{0} \leqslant c_{1} \delta^{-2}\left(\left\|b_{1}\right\|_{p}+\left\|b_{2}\right\|_{0}\right) \tag{3.11}\\
& \max |v|: c_{4} \delta=\| \|_{\}}, \quad c_{1}=\sqrt{2}(1-\sigma)^{1}, \quad \delta^{2}<|4 x(1-\sigma)|^{-1}
\end{align*}
$$

Integrating (3.7) between 0 and ρ, we have

$$
\begin{align*}
& \delta^{2} A v-u\left(y^{*}-\theta\right)=B_{1}, \quad f^{*} u+r\left(y^{*}-\theta\right):=B_{2} \tag{3.12}\\
& B_{1}=-\int_{0}^{1} t b_{1} d l, \quad B_{2},-\int_{0}^{!} l_{2} d t, \quad\left|\frac{v}{\rho}, \frac{u}{\rho}\right|_{i=0}<\infty, \quad\left[\frac{d v}{d \rho}-\left.s v\right|_{n=1}=0\right.
\end{align*}
$$

Applying (3.4) and (3.11), we deduce from the second equation

$$
\begin{equation*}
\max |u| \leqslant c_{5} \delta^{-2}\|b\|_{Y}, \quad c_{3}=4 x\left(c_{4} m_{0}+1\right) \tag{3.13}
\end{equation*}
$$

Let us go from the first equation in (3.12) to the equivalent integral equation

$$
\begin{align*}
& \delta^{2} v=\frac{1}{\rho} \Phi(\varphi, 1)+\rho \frac{1+5}{1-\sigma} \Phi(1,1) \tag{3.14}\\
& \Phi(\rho, t)=\int_{0}^{0} \eta d \eta \int_{\eta}^{t} B_{3} \xi^{-1} d \xi . \quad B_{3} \cdots B_{1}+u\left(y^{*}-\theta\right)
\end{align*}
$$

Differentiating (3.14) twice with respect to ρ, we obtain

$$
\begin{align*}
& \delta^{2} \frac{d v}{d \rho} \int_{\rho}^{1} R_{3 j}^{z-1} d \xi-\frac{1}{\rho^{2}} \Phi(\rho, 1)+\frac{1-5}{1-\sigma} \Phi(1,1) \tag{3.15}\\
& \delta^{2} \frac{d^{2} v}{d \rho^{2}} \quad-B_{3 \rho^{-1}}+2 \rho^{-3} \Phi(\rho, \rho)
\end{align*}
$$

From the first equation in (3.15) we find the estimate

$$
\max \left|\begin{array}{c}
d v \tag{3.16}\\
d \rho
\end{array}\right| \leqslant c_{5} \delta-4\|\boldsymbol{b}\|_{Y}, \quad c_{6}=\frac{3}{2}\left(1-c c_{5} m_{0}\right)
$$

Furthermore, we divide the second equation in (3.12) by f^{*} and differentiate the expression obtained with respect to ρ. Then applying (3.4), (3.9), (3.14) and (3.16), as well as the inequalities

$$
\max \left|\frac{d i^{*}}{d \rho}\right|+\max \left|\frac{d}{d \rho}\left(\theta-y^{*}\right)\right| \leqslant c_{7}, \quad m_{0} \leqslant c_{7}
$$

we derive the estimates

$$
\begin{equation*}
\max \left|\frac{d u}{d \rho}\right| \therefore c_{8} \delta-1\|b\|_{Y}, \quad c_{\mathbf{B}}=\left\{\alpha c _ { 7 } \left[1+c_{0}+c_{7}+\left\{\alpha c_{9} c_{7}\right]\right.\right. \tag{3.17}
\end{equation*}
$$

By using (3.17) and the triangle inequality, we have from the second equation in (3.15)

$$
\begin{equation*}
\max \left|\rho^{-1} \frac{d^{2} v}{d \rho^{2}}\right| \leqslant c_{8} \delta^{-6}\|b\|_{Y}, \quad c_{3}=\frac{3}{2} m_{0} c_{3}+1 \tag{3.18}
\end{equation*}
$$

Finally, we obtain the estimate

$$
\begin{equation*}
\max \left|\frac{d^{3} v}{d p^{2}}\right| \leqslant r_{10} \delta^{-6}\|\mathbf{b}\|_{Y}, \quad c_{10} \cdots c_{1}+2 c_{2} c_{8}+c_{11}+1 \tag{3.19}
\end{equation*}
$$

where $c_{11}-1+m_{u} c_{,}$. For this we find from (3.15)

$$
\delta_{0} \frac{1}{\rho} \frac{d}{d \rho}\left(\frac{v}{\rho}\right)=-2 \rho^{-4}(\boldsymbol{P}(\rho, \rho)
$$

By using (3.4) and (3.18) we hence deduce

$$
\begin{equation*}
\max \left|\frac{1}{\rho} \frac{d}{d \rho}\left(\frac{v}{\rho}\right)\right| \leqslant c_{11} \delta^{-6}\|b\|_{Y} \tag{3.20}
\end{equation*}
$$

We later differentiate the first equation in (3.12) with respect to ρ, and by using the triangle inequalties as well as the estimates (3.4), (3.17), (3.18), (3.20), we arrive at (3.19). The estimate (3.6) now results from (3.11), (3.13), (3.16)- (3.20), where $-r_{2}=2 c_{9}+$ $c_{9}+c_{11}$.

Theorem 3.2. Let the conditions of Lemma 3.1 be satisfied. Then there exists a q_{1} such that the problem (2.1) has a unique positive solution for $0<q<q_{1}$ for which the asymptotic expansions (2.2) are valid and the following estimates hold

$$
\begin{align*}
& \max \left|f-f_{\delta}^{k}\right|+\max \left|y-y_{\delta}^{k}\right| \leqslant c_{12} \delta^{k+2}, \quad q=\delta^{2} \tag{3.21}\\
& \max \left|\frac{d}{d f}\left(f-f_{0}^{k}\right)\right|+\max \left|\frac{d}{d \rho}\left(y-y_{0}^{k}\right)\right| \leqslant c_{13} \delta^{k+1}, \quad k \geqslant 0
\end{align*}
$$

The proof is carried out by using Theorem 3.2 in /13/.
The inequality (3.3) is satisfied if q in the expansions (3.1) is sufficiently small $(0<$ $q<q_{1}$) and $n>11$. By using (2.2), (3.1), (3.2) we find from (3.20) in $/ 13 /$

$$
\begin{equation*}
\|\mathbf{U}-\mathbf{U} *\|_{Y} \leqslant c_{12} \delta^{n-3}(n>3) \tag{3.22}
\end{equation*}
$$

We hence arrive at (3.21) by using the triangle inequality and embedding theorems.
4. Construction of the principal terms of the asymptotic expansions (1.4) as $\boldsymbol{q} \rightarrow 0$. The boundary value problems (1.5) are a singularly perturbed system of linear differential equations with a small parameter $|q|$ in the highest operator and with variable coefficients containing boundary-layer-type functions. In fact, by using the change of variables $q=\delta^{2}$;

$$
\begin{align*}
& v_{s}=\delta^{2-2 s} v_{s}, \quad u_{s}==\delta^{-2 s} \omega_{s}, \quad v_{0}=f, \omega_{0}=y \tag{4.1}\\
& \frac{d^{\chi} h_{s+}}{d t^{x}}=\delta^{x-2 s-2} \frac{d^{\chi} h_{s+2}^{0}}{d t^{\alpha}}, \quad \frac{d^{\chi} g_{s}}{d t^{\varkappa}}=\delta^{x-2 s} \frac{d^{x} g_{s}^{\circ}}{d t^{\circ}}, \quad q>0
\end{align*}
$$

we obtain from (1.5) for $x=0,1,2$

$$
\begin{align*}
& \delta^{2} A v_{F}-\frac{1}{2} \sum_{k=j=s}\left(\omega _ { k } \left(v_{j}+\theta()_{s}=0, \quad s \geqslant 1\right.\right. \tag{4.2}\\
& \sum_{k-j=s} v_{k}()_{j}-\theta v_{s}+\delta^{4} A\left(\omega_{s-2}=0, \quad()_{-1}=0\right. \\
& \left|\frac{v_{s}}{\rho}\right|_{\rho=0}<\infty, \quad\left[\frac{d v_{s}}{d_{p}}-\sigma v_{s}\right]_{\rho=1}=\delta^{-1}\left[\frac{d h_{s+1}^{0}}{d t}+\delta \sigma h_{s}\right]_{t=0}
\end{align*}
$$

The functions v_{i}, ω_{i} are found successively, and are considered known for $i<s$, where v_{0}, ω_{0} are defined by (2.2). The asymptotic expansions of the boundary value problems (4.2) are constructed as $\delta \rightarrow 0$ in the form

$$
\begin{gather*}
v_{s} \sim \sum_{k=0}^{n_{s}} \delta^{k}\left[v_{s k}(\rho)+\mathrm{J}_{k} v_{s}(\tau)\right] \tag{4.3}\\
\left.\omega_{s} \sim \sum_{k=0}^{n_{3}} \delta^{k}\left[\omega_{s k}(\rho)+\Pi_{k^{\prime}}\right)_{s}(\tau)\right], \quad \tau=(1-\rho), \delta
\end{gather*}
$$

The functions $v_{\sim h}$. $\omega_{s k}$ are obtained by direct expansion of the solution $\left(v_{s}, \omega_{s}\right)$ in powers of δ and are determined from simple algebraic equations

$$
\begin{align*}
& \theta \omega_{s 0}-\sum_{k+j=s} \omega_{k \cdot ⿱ ㇒}{ }^{\prime}{ }^{\mathrm{m} j 0}=0, \quad \sum_{k+j=s} v_{k 0} \omega_{j 0}-\theta v_{s 0}=0 \tag{4,4}\\
& A v_{s, l-q}-\frac{1}{2} \sum_{l+j=s} \sum_{m+i=l}()_{l / m}\left(\omega_{j i}+\theta \omega_{s l}=0\right. \\
& \sum_{k+j=m s} \sum_{m-t, j=l}\left({ }^{(1)} k m^{2} v_{j i}-\theta v_{w l}+A()_{k-2, k-4}=0, \quad s, l \geqslant 1\right. \\
& q==-1 .-2 ; k, \quad m, j, i \geqslant 0 ; \quad \omega_{h, p}=v_{i, \eta}=0, p=-1,-2,-3
\end{align*}
$$

The boundary layer functions $\Pi_{i} \nu_{s}, \Pi_{i} \omega_{s}$ are constructed by using the second iteration process $/ 7 /$. Equations of the form (2.5) with right sides dependent on $\Pi_{j} v_{s}, \Pi_{j} \omega_{s}$ for $j<i$, un $\Pi_{k} v_{m}, \Pi_{k} \omega_{m}$ for $m<s$, and also on the coefficients of the Taylor series expansions of the
functions $v_{j s}, \omega_{j_{s}}$ for $\rho=1$, etc., are obtained for their determination.
Limiting ourselves to the principal terms of the asymptotic expansions (2.2), (4.2), by using (2.3)-(2.6) as well as (3.6)-(3.9) from $/ 3 /$, we have for the membrane solution from (1.4) for $n=1$ in the case $q>0$ as the parameters δ and $\varepsilon \delta^{-2}$ tend simultaneously to zero

$$
\begin{align*}
& v \sim v_{\varepsilon, \delta}=v_{0}(\rho, \tau)+\varepsilon v_{1}(\rho, \tau)+\varepsilon^{2} h_{2}(t), \quad t=(1-\rho) / \varepsilon \tag{4.5}\\
& u \sim u_{F, \delta}-u_{0}(\rho, \tau)+g_{0}(t)+\varepsilon\left[u_{1}(\rho, \tau)+g_{1}(t)\right] \\
& v_{0}=\delta^{2}\left[-\frac{1}{2} \rho^{2} \theta^{-1}+\delta C \exp \left(-\alpha_{0} \tau\right)+O\left(\delta^{2}\right)\right], \quad \tau=(1-\rho) / \delta \\
& u_{0}=2 \theta+2 \delta C \theta_{0}^{2} \exp \left(-\alpha_{0} \tau\right)+O\left(\delta^{2}\right), \quad \theta_{0}=\theta(1) \\
& \left.\alpha_{0}{ }^{2}=\theta_{9}^{2} f_{00}{ }^{-1}=-2 \theta_{0}^{3} 11+O(\delta)\right], \quad g_{0}(t)=-u_{0}(1) K=-2 \theta_{0}\left[1+2 C \delta \theta_{0}+O\left(\delta^{2}\right)\right] K \\
& K=\exp \left[-t \sqrt{v_{0}(1)}\right]=\exp [-\delta t a], \quad a=\left[-{ }^{1}, \theta_{0}^{-1}+C \delta+\right. \\
& \left.\left.O\left(\delta^{2}\right)\right]^{1 / 1}, \left.\quad h_{2}(t)=\frac{u_{0}(1)}{v_{0}(1)} K \right\rvert\, u_{0}(1)-\theta(1)-\frac{1}{8} u_{0}(1) K\right]= \\
& \quad-4 \delta^{-2} \theta_{0}^{3}\left(1-{ }^{1} / 4 \exp (-\delta a t)\right) \exp (-\delta a t)[1+O(\delta)] \\
& v_{1}=\theta_{0} \exp \left(-a_{0} \tau\right)[1+O(\delta)], u_{1}=2 \theta_{0}^{3} \delta^{-2} \exp \left(-\alpha_{0} \tau\right) \times \\
& {[1+O(\delta)], \quad g_{1}(t)=-2 \theta_{0}^{3} \delta^{-2} \exp (-a \delta t) \times\left[1 \mid \delta t\left(-2 \theta_{0}\right)^{-1 / 2}+O(\delta)\right]} \\
& \qquad C=2^{-1.5}\left(-\theta_{0}\right)^{-3.5}\left[(2-\sigma) \theta_{0}+\theta_{1}\right], \quad \theta_{1}=-\left.\frac{d \theta}{d \rho}\right|_{\rho=1}
\end{align*}
$$

(there are misprints in the formula for $h_{2}(t)$ in $/ 3 /$ that are eliminated here). Let us note that $v_{1 k}=\omega_{1 k}=0$ for all k. Moreover, it can be established that the functions $g_{s}{ }^{3}, h_{\mathrm{s}+2}$ from (4.1) consist of components of the form $t^{m} \exp$ ($-h \delta a t$), where m and n are integers ($0 \leqslant m \leqslant$ $s+1,1 \leqslant n \leqslant s+1$). The coefficients between these components are expanded in a series of integer powers of δ, where the following estimates hold

$$
\begin{equation*}
\frac{d^{\chi} h_{s+2}^{\circ}}{d l^{2}}=O(1), \quad \frac{d^{\chi} g_{s}^{\circ}}{d t^{\kappa}}=O(1), \quad x=0,1,2 \tag{4.6}
\end{equation*}
$$

Theorem 4.1. Let the conditions $\delta \ll 1, \varepsilon \delta^{-2} \ll 1$ and $\left(\varepsilon \delta^{-2}\right)^{n+1} \varepsilon^{-4} \rightarrow 0(n \gg 1)$ be satisfied simultaneously. Then a membrane solution of the problem (1.1), (1.2) exists for which the asymptotic formulas (4.5) are valid and the following estimates exist

$$
\begin{equation*}
\max \left|\delta^{-2}\left(v-v_{\varepsilon, \delta}\right)\right|+\max \left|u-u_{\varepsilon, \delta}\right|<m_{1}\left(\varepsilon \delta^{-2}\right)^{2} \tag{4.7}
\end{equation*}
$$

The theorem is proved analogously to the proof of Theorem 4.1 in /3/. The estimates (4.13) and (4.17) in $/ 3$ / are conserved, but in place of the estimate (4.9) we deduce for the same notation

$$
\begin{equation*}
\left\|\mathbf{P}\left(\mathbf{V}_{k}^{*}\right)\right\|_{L_{p}}<m_{*}\left(\varepsilon \delta^{-2}\right)^{k+1} \quad\left(\delta \rightarrow 0, \varepsilon \delta^{-2} \rightarrow 0\right) \tag{4.8}
\end{equation*}
$$

where m_{*} is a positive constant independent of δ and ε. For $\left(\varepsilon / \delta^{2}\right)^{n+1} \varepsilon^{-4} \rightarrow 0(n \gg 1$, i.e., in the domain somewhat smaller than $\varepsilon / \delta^{2} \leqslant 1$) we obtain that all the conditions of Theorem 4.2 in $/ 3 /$ are satisfied. From this theorem the existence of a membrane solution and the foundation of the asymptotic expansions (1.4) result. The estimates (4.5) are derived analogously to /13/ by using the trinagle inequalities.

Under the effect of internal pressure ($q<0$) the asymptotic expansions of the membxane solution and their foundation are carried out exactly the same as for $q>0$. For the positive solution of the problem (1.3) for $\delta^{2}=-q \rightarrow 0$ we have the asymptotic expansions (2.2)- (2.5) in which it is necessary to set $y_{\mathrm{n}}=0$, to replace θ by ($-\theta$) in (2.3) and θ_{0} by ($-\theta_{0}$) in (2.4) and (2.5). Limiting ourselves to just the principal terms of the asymptotic for the membrane solution for $|q| \rightarrow 0, \varepsilon /|q| \rightarrow 0$, we obtain the asymptotic formulas (4.5) but with $u_{0}, g_{0}, h_{2}, v_{1}$, u_{1}, g_{1} replaced, respectively, by the following expressions:

$$
\begin{align*}
& u_{0}=-2 \delta \theta_{0}^{2} C \exp \left(-\alpha_{0} \tau\right)+O\left(\delta^{2}\right), \quad \tau=(1-\rho) / \delta \tag{4.9}\\
& g_{0}(t)=\delta \exp (-\delta a t)\left[2 C \theta_{0}^{2}+O(\delta)\right] \\
& h_{2}(t)=2 C \theta_{0}^{3} a^{-2} \delta^{-1} \exp (-\delta a t)[1+O(\delta)] \\
& v_{1}(\rho, \tau)=\delta \alpha_{0}^{-1}\left[(2-\sigma) \theta_{0}+\theta_{1}\right] \exp \left(-\alpha_{0} \tau\right)[1+0(\delta)] \\
& u_{1}(\rho, \tau)=-2 \theta^{2} \alpha_{0}^{-1} \delta^{-1}\left[(2-\sigma) \theta_{0}+\theta_{1}\right] \exp \left(-\alpha_{0} \tau\right)[1+O(\delta)]
\end{align*}
$$

5. Thin shallow shell in the shape of an elliptic paraboloid under uniform internal pressure. A secondary edge effect can occur for strictly convex elastic shells with fixed clamping of the edge. As an example we consider a shell initially in the shape of a thin elliptic paraboloid under uniform internal pressure. The appropriate equations are written in dimensionless variables in the form

$$
\begin{align*}
& \Delta^{2} F+\frac{1}{2}|u, u|-[z, u]=0, \quad \varepsilon^{2} \Delta^{2} u-|w-z, F|+q=0 \tag{5.1}\\
& \Delta F=F_{x x} F_{y y},|w, M|=w_{x x} F_{y y}+w_{y y} F_{x x}^{\prime}-2 w_{x y} F_{x y} \\
& z=1-1 / 2\left(k_{1} x^{2}+k_{2} y^{2}\right), \quad q>0
\end{align*}
$$

Here k_{1}, h_{2} are positive constants. For xigid clamping of the shell at the contour

$$
\Gamma \equiv\left\{x=\sqrt{2 / h_{1}} \cos \varphi, y=\sqrt{2 / k_{2}} \sin \varphi, 0<\varphi<2 \pi\right\}
$$

we have the boundary conditions /15/:

$$
\begin{align*}
& w=w_{0}=0, \quad \Gamma_{2} F=F_{p p}-\sigma F_{\mathrm{sc}}+\chi \sigma F_{p}=0 \tag{5.2}\\
& \Gamma_{3} F=F_{\rho P} \cdots(2+\sigma) F_{\rho s,} \div 3 x F_{s}+(2-\sigma) x_{s} F_{s}-x^{2} \times(1-\sigma) F_{i}=0
\end{align*}
$$

($0, s, x$ are, respectively, the internal normal, the axc length, and the curvature of I). The "degenerate" problem about the equilibrium of an absolutely flexible shell when $\varepsilon=0$ is written in the form of a system of equations with nonlinear boundary (edge) conditions (*)

$$
\begin{align*}
& \left.\Delta^{2} F_{0}+11_{2} \mid w_{0}, w_{0}\right\rfloor-\left\lfloor z, w_{0}\right\rfloor=0, \quad\left[w_{0}-z, F_{v}\right]-q \tag{5.3}\\
& w_{0}\left|\mathrm{~F}=0 . \quad \mathrm{I}_{2} F_{0}=0, \quad \Gamma_{3} F_{0}=\varkappa\left({ }^{1} / 2 w_{0 p}-z_{0}\right) w_{00}\right| \mathrm{C}
\end{align*}
$$

The so-called positive solutions satisfying the following conditions

$$
\begin{equation*}
F_{0 x x} \geqslant 0, \quad F_{0 y y} \geqslant 0, \quad F_{0 x x} F_{0 y!}-F_{0 x y}^{2}=0 \tag{5.4}
\end{equation*}
$$

everywhere in $D+\Gamma$ have meaning in mechanics for the boundary value problem (5.3)/5,16,17/, where D is the domain the shell planform occupies.

The positive solutions introduced in Sect.l for the axisymmetric equilibria satisfy the conditions (5.4) only upon compliance with the additional inequality $d v_{0} d r \geqslant 0$ for $r \in[0,1]$.

Then as $q \rightarrow 0$ the following asymptotic representations are constructed for the positive solution of the problem (5.3)

$$
\begin{align*}
& F_{0}^{q} \approx q\left[f(x, y)+q \psi_{1}(\tau, \varphi)\right], \quad w_{0}^{2} \approx q\left[\left(\sigma^{2}-1\right) K+\beta_{1}(\tau, \varphi)\right] \tag{5.5}\\
& \left.f=1 /{ }_{2} K l\left(k_{2}+\sigma k_{1}\right) x^{2}+\left(k_{1}+\sigma k_{2}\right) y^{2}\right], \quad \tau-\rho \sqrt{q} \\
& K=\left(k_{1}{ }^{2}+k_{2}^{2}+2 \sigma k_{1} k_{2}\right)^{-1}, \quad \beta_{1}=-T_{n}(x c)^{-1} \psi_{1}= \\
& \quad(x c)^{-1} \exp (-\alpha \tau) \Gamma_{2} f, \quad c=z_{\rho} \mid \mathrm{H}, \quad \alpha=x c T_{2}^{-2} /=0 \\
& x c=k_{1} k_{2} b_{0}>0, \quad T_{n}=K b_{n}\left(k_{2}{ }^{2} \sin ^{2} \varphi+k_{1}^{2} \cos ^{2} \varphi+\sigma k_{1} k_{2}\right) \\
& b_{0}=\left(k_{1} \cos ^{2} \varphi+k_{2} \sin ^{2} \varphi\right)^{-1}, \quad \Gamma_{2} f=\left(1-\sigma^{2}\right) b_{0} k_{1} k_{2} K
\end{align*}
$$

Theorem 5.1. Let $0.5 \leqslant k_{1} k_{2}{ }^{-1} \leqslant 2$ and $q \rightarrow 0$. Then there exists a q_{1} such that for $0<$ $q<q_{1}$ the problem (5.3) has a unique positive solution (F_{*}, w_{*}) for which the asymptotic representations (5.5) are valid, and the following estimates hold for $j=0,1,2$

$$
\max \left\|D^{\dot{*}}\left(w_{*}-w_{0}^{q}\right)|\quad| D^{\dot{j}}\left(F_{*}-F_{0}^{q}\right)\right\| \leqslant m_{1} q^{(3-j) / 2}
$$

where m_{1} is a certain positive constant independent of q and D^{j} is the derivative of order j.
The proof of the theorem is omitted and will be presented somewhere else. Compliance with the inequalities (5.4) for $F_{0}{ }^{\prime}$ in the conditions of the theorem is established by direct computations.

Using the presence of the second small parameter x^{2} in (5.1) and applying the boundarylayer method according to the scheme of $/ 17 /$, we obtain that the problem (5.1), (5.2) has a

[^1]solution in the neighborhood of the positive solution (5.5) as the parameters q and $e q^{-1}$ tend simultaneously to zero, for which the following simple asymptotics formulas are valid:
\[

$$
\begin{gather*}
F \approx F_{0}^{q}(x, y)+\varepsilon^{3} h_{2}(t, \varphi), \quad w \approx w_{0}^{q}(x, y)+\varepsilon g_{0}(t, \varphi) \tag{5.6}\\
g_{0}=a_{1} m^{-1} \exp (-\rho m / \varepsilon), \quad \partial^{2} h_{2} / \partial t^{2}=x a_{1} m^{-1}\left[\left(a_{1}-c\right) \exp (-\rho m / \varepsilon)-y_{4} a_{1} \exp (-2 \rho m / \varepsilon)\right] \\
m=\sqrt{N}, \quad a_{1}=\left.\frac{\partial w_{0}}{\partial \rho}\right|_{0=0}, \quad c=\left.\frac{\partial z}{\partial \rho}\right|_{\rho=0}, \quad N=\left[F_{0 ; z}-x F_{0 \rho}\right]_{\Gamma}>0, \quad t=\rho / \varepsilon
\end{gather*}
$$
\]

The solution (5.6) corresponds to equilibrium with just tensile forces, and the phenomenon of the seconđary edge effect holds for it.

REFERENCES

1. REISSNER E., The edge effect in symmetric bending of shallow shells of revolution. Commun. Pure and Appl. Math., Vol.12, No.2, 1959.
2. FEODOS'EV V.I., Elastic Elements of Precison Instrumentation. OBORONGIZ, Moscow, 1949.
3. SRUBSHCHIK L.S. and IUDOVICH V.I., Asymptotic integration of the system of equations for the large deflection of a symmetrically loaded shells of revolution. PMM. Vol. 26, No. 5 , 1962.
4. BAUER L, CALLEGARI A.J., and REISS E.L., On the collapse of shallow elastic membranes. In: Nonlinear Elasticity. ACADEMIC PRESS, New York-London, 1973.
5. ALEKSEEV S.A., Analysis of a circular elastic membrane under uniform transverse load. Inzh. Sb., Vol.25, 1959.
6. VISHIK M.I. and LIUSTERNIK L.A., On the asymptotic of the solution of boundary value problems for quasilinear differential equations. Dokl. Akad. Nauk SSSR Vol.121, No.5, 1958.
7. VASIL'EVA A.B., Asymptotic of the solutions of certain boundary value problems for equations with a small parameter in the highest derivative. Dokl. Akad. Nauk SSSR, Vol.135, No.6, 1960 .
8. BROMBERG E. and STOKER J.J., Nonlinear theory of curved elastic sheets, Quart. Appl. Math., Vol.3, 1945.
9. RABOTNOV Iu.N., Some solutions of membrane theory of shells, PMM Vol.10, No.5-6, 1946.
10. USIUKIN V.I., Deformation of membrane shells of revolution. Izv. Akad. Nauk SSSR,MEKHANIKA I MASHINOSTROENIE, NO.2, 1964.
11. POGORELOV A.V., Geometric Theory of Shell Stability, NAUKA, Moscow, 1966.
12. SRUBSHCHIK L.S. and IUDOVICH V.I., On the asymptotic integration of the equilibrium equation of a fluid with surface tension in a strong gavity field, Zh. Vychisl. Matem. Matem. Fiziki, Vol.6, No.6, 1966.
13. SRUBSHCHIK L.S., Nonstiffness of spherical shells, PMM Vol.31, No.4, 1967.
14. SRUBSHCHIK L.S. Precritical equilibrium of a thin shallow shell of revolution and its stability, PMM Vol.44, No.2, 1980.
15. MUSHTARI Kh. M. and GALIMOV K.z., Nonlinear Theory of Elastic Shells, TATKNIGOIZDAT,Kazan', 1957.
16. ALEKSEEV S.A., Principles of the general theory of soft shells. Design of Spatial Structures, No.ll, GOSSTROIIZDAT, Moscow, 1967.
17. SRUBSHCHIK L.S., On the asymptotic integration of a system of nonlinear equations of plate theory. PMM, Vol.28, No.2, 1964.

[^0]: *Prikl.Matem.Mekhan., 45,No. 5, 884, 894,1981

[^1]: *) See Srubshchik, L.S., Edge effect in the flexure of absolutely flexible shells. Dep. VINITI, No.4265-79, 14 December 1979, Rostov-on-Don.

